Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth estimates with high spatial resolution over watershed scales. While light detection and ranging (LiDAR) produces precise snow depth estimates for areas without vegetation cover, there has generally been poorer precision in forested areas. At a constant flight speed, the poorest precision within forests is observed beneath tree canopies that retain foliage into or through winter. The precision of lidar-derived elevation products is improved by increasing the sample size of ground returns but doing so reduces the spatial coverage of a mission due to limitations of battery power. We address the influence of flight speed on ground return density for baseline and snow-covered conditions and the subsequent effect on precision of snow depth estimates across a mixed landscape, while evaluating trade-offs between precision and bias. Prior to and following a snow event in December 2020, UAS flights were conducted at four different flight speeds over a region consisting of three contrasting land types: (1) open field, (2) deciduous forest, (3) conifer forest. For all cover types, we observed significant improvements in precision as flight speeds were reduced to 2 m s−1, as well as increases in the area over which a 2 cm snow depth precision was achieved. On the other hand, snow depth estimate differences were minimized at baseline flight speeds of 2 m s−1 and 4 m s−1 and snow-on flight speeds of 6 m s−1 over open fields and between 2 and 4 m s−1 over forest areas. Here, with consideration to precision and estimate bias within each cover type, we make recommendations for ideal flight speeds based on survey ground conditions and vegetation cover.more » « less
-
LiDAR data were acquired over the footprint of the flux tower and established long-term study plots at Thompson Farm Observatory, Durham, NH during the growing season. Data were acquired using a LiVox Avia lidar sensor on a Green Valley International LiAirV70 payload. The LiVox Avia is a triple echo 905 nm lidar sensor with a non-repetitive circular scanning pattern that can retrieve ~700,000 returns per second. The sensor payload was flown on board a DJI M300 at an altitude of ~65 m above ground level in a double grid pattern with ~32 m flight line spacing, yielding a return density across the sampling area >500 points per square meter. Returns were georeferenced to WGS84 UTM Zone 19N coordinates with heights above ellipsoid using Green Valley International’s LiGeoreference software with automatic boresight calibration. Outliers were removed, then flight line point clouds were merged. Returns were classified as ground and non-ground returns using Green Valley International’s Lidar360 software and output as LAS (v 1.4) data sets. LAS files were subsequently tiled for publication.more » « less
-
Orthorectified flight line hyperspectral cubes retiled for publication. Collectively, the tiled hyperspectral cubes cover the footprint of the flux tower and established long-term study plots at Thompson Farm Observatory, Durham, NH. Data were acquired using a Headwall Photonics, Inc. Nano VNIR hyperspectral line scanning imager with 273 bands from 400-1000 nm. The sensor was flown on board a DJI M600 hexacopter at an altitude of ~80 m above the forest canopy, yielding ~6 cm GSD. Flight lines were converted from raw sensor observations to upwelling radiance a using a vendor-supplied radiometric calibration file for the sensor, then converted to reflectance using a calibration tarp with known reflectance. Finally, cubes were orthorectified using a 1m DSM in Headwall’s SpectralView software, mosaicked to individual flight line cubes, then subsequently tiled for publication.more » « less
-
LiDAR data were acquired over the footprint of the flux tower and established long-term study plots at Thompson Farm Observatory, Durham, NH during leaf-off conditions in November 2022. Data were acquired using a LiVox Avia lidar sensor on a Green Valley International LiAirV70 payload. The LiVox Avia is a triple echo 905 nm lidar sensor with a non-repetitive circular scanning pattern that can retrieve ~700,000 returns per second. The sensor payload was flown on board a DJI M300 at an altitude of ~65 m above ground level in a double grid pattern with ~32 m flight line spacing, yielding a return density across the sampling area >500 points per square meter. Returns were georeferenced to WGS84 UTM Zone 19N coordinates with heights above ellipsoid using Green Valley International’s LiGeoreference software with automatic boresight calibration. Outliers were removed, then flight line point clouds were merged. Returns were classified as ground and non-ground returns using Green Valley International’s Lidar360 software and output as LAS (v 1.4) data sets. LAS files were subsequently tiled for publication.more » « less
-
Abstract Northern peatlands are a globally significant source of methane (CH4), and emissions are projected to increase due to warming and permafrost loss. Understanding the microbial mechanisms behind patterns in CH4production in peatlands will be key to predicting annual emissions changes, with stable carbon isotopes (δ13C‐CH4) being a powerful tool for characterizing these drivers. Given that δ13C‐CH4is used in top‐down atmospheric inversion models to partition sources, our ability to model CH4production pathways and associated δ13C‐CH4values is critical. We sought to characterize the role of environmental conditions, including hydrologic and vegetation patterns associated with permafrost thaw, on δ13C‐CH4values from high‐latitude peatlands. We measured porewater and emitted CH4stable isotopes, pH, and vegetation composition from five boreal‐Arctic peatlands. Porewater δ13C‐CH4was strongly associated with peatland type, with δ13C enriched values obtained from more minerotrophic fens (−61.2 ± 9.1‰) compared to permafrost‐free bogs (−74.1 ± 9.4‰) and raised permafrost bogs (−81.6 ± 11.5‰). Variation in porewater δ13C‐CH4was best explained by sedge cover, CH4concentration, and the interactive effect of peatland type and pH (r2 = 0.50,p < 0.001). Emitted δ13C‐CH4varied greatly but was positively correlated with porewater δ13C‐CH4. We calculated a mixed atmospheric δ13C‐CH4value for northern peatlands of −65.3 ± 7‰ and show that this value is more sensitive to landscape drying than wetting under permafrost thaw scenarios. Our results suggest northern peatland δ13C‐CH4values are likely to shift in the future which has important implications for source partitioning in atmospheric inversion models.more » « less
-
The ability to automatically delineate individual tree crowns using remote sensing data opens the possibility to collect detailed tree information over large geographic regions. While individual tree crown delineation (ITCD) methods have proven successful in conifer-dominated forests using Light Detection and Ranging (LiDAR) data, it remains unclear how well these methods can be applied in deciduous broadleaf-dominated forests. We applied five automated LiDAR-based ITCD methods across fifteen plots ranging from conifer- to broadleaf-dominated forest stands at Harvard Forest in Petersham, MA, USA, and assessed accuracy against manual delineation of crowns from unmanned aerial vehicle (UAV) imagery. We then identified tree- and plot-level factors influencing the success of automated delineation techniques. There was relatively little difference in accuracy between automated crown delineation methods (51–59% aggregated plot accuracy) and, despite parameter tuning, none of the methods produced high accuracy across all plots (27—90% range in plot-level accuracy). The accuracy of all methods was significantly higher with increased plot conifer fraction, and individual conifer trees were identified with higher accuracy (mean 64%) than broadleaf trees (42%) across methods. Further, while tree-level factors (e.g., diameter at breast height, height and crown area) strongly influenced the success of crown delineations, the influence of plot-level factors varied. The most important plot-level factor was species evenness, a metric of relative species abundance that is related to both conifer fraction and the degree to which trees can fill canopy space. As species evenness decreased (e.g., high conifer fraction and less efficient filling of canopy space), the probability of successful delineation increased. Overall, our work suggests that the tested LiDAR-based ITCD methods perform equally well in a mixed temperate forest, but that delineation success is driven by forest characteristics like functional group, tree size, diversity, and crown architecture. While LiDAR-based ITCD methods are well suited for stands with distinct canopy structure, we suggest that future work explore the integration of phenology and spectral characteristics with existing LiDAR as an approach to improve crown delineation in broadleaf-dominated stands.more » « less
An official website of the United States government
